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Abstract. Lagrangian bounds, i.e. bounds computed by Lagrangian relaxation, have been
used successfully in branch and bound bound methods for solving certain classes of non-
convex optimization problems by reducing the duality gap. We discuss this method for the

class of partly linear and partly convex optimization problems and, incidentally, point out
incorrect results in the recent literature on this subject.
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1. Introduction

Branch and bound methods are of frequent use in nonconvex global opti-
mization, especially for solving large scale problems. A class of problems
for which these methods have proved to be particularly useful includes the
following general partly convex optimization problem

minfFðx; yÞj Giðx; yÞO0 i ¼ 1; . . . ;m; x 2 C; y 2 Dg; ðGPCÞ
where C is a nonempty compact convex subset of a (hyper)rectangle
X � R

n
þ;D is a nonempty closed convex subset of a (hyper)rectangle

Y � R
p
þ; while Fðx; yÞ : X� Y! R; and Giðx; yÞ : X� Y! R; i ¼ 1; . . . ;m;

are lower semi-continuous functions, convex in y for every fixed x: As is
well known, problems of this class are encountered in various forms in a
multitude of applications: pooling and blending in oil refinery, optimal
design of water distribution networks, structural design, signal processing,
robust stability analysis, design of chips, etc. (see e.g. [7]).
Two basic operations involved in a branch and bound procedure for

global minimization are branching (successive partition) and bounding
(estimating a lower bound for the objective function value over the feasible
portion contained in each partition set). The partial convex structure
allows the problem (GPC) to be decomposed into a sequence of problems
of smaller dimension by branching upon the nonconvex variables x; rather
than upon the total set of variables x; y: The successive partition of the
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x-space is usually required to be exhaustive, so that any filter (infinite
sequence of nested partition sets) shrinks to a single point [15]. As for
bounding, one possible method consists in solving for each partition set
the Lagrangian dual of the problem restricted to this partition set. The
lower bound provided by solving a Lagrangian relaxation is often referred
to as a Lagrangian bound or sometimes, a dual bound. It has been observed
that in most cases the difference between the exact optimal value and the
Lagrangian bound, i.e. the duality gap, decreases when the partition set
becomes smaller. One may hope that a suitably organized branch and
bound process will generate a filter of partition sets such that the duality
gap for the subproblems associated with the partition sets in this filter
tends to zero, yielding at the limit a convex subproblem with zero duality
gap. Any optimal solution of the latter subproblem will then provide an
optimal solution of the original problem.
Three issues arise in this methodology: (1) for which problems Lagrang-

ian bounds can be practically computed? (2) when Lagrangian bounds can
be computed, are they the best among bounds obtained by convex relaxa-
tion? and (3) under which conditions a branch and bound of the above
described type is guaranteed to converge to a global optimal solution?
Due to their interest from both a theoretical and practical point of

view, these issues have, in the past two decades, attracted the attention
of an increasing number of researchers. Partial answers to these issues
were obtained in [4] and [5], where the idea of solving nonconvex optimi-
zation problems by reducing the duality gap was for the first time put
forward and implemented on concrete problems. However, to our knowl-
edge, the first comprehensive account on the use of Lagrangian bounds
in global continuous and discrete optimization was given by Shor and
Stesenko [10]. This booklet contains, among other things, several useful
remarks that could have helped to avoid regrettable errors in subsequent
papers, [11, 12], by other authors. In a more recent paper [2], the ques-
tions of when Lagrangian bounds can be easily computed and when the
associated branch and bound algorithm is guaranteed to converge were
studied in the more restricted context of partly linear programs, which
constitute a subclass of the class (GPC). Lagrangian duality results,
together with their applications to biconvex optimization problems
(another subclass of (GPC)), were discussed at length in [7]. On the
other hand, due to quite a few incorrect and misleading results, e.g. [11,
12], a rather confuse situation has resulted in this important area of
research.
The aim of the present paper is to clarify this situation by investigating

the above issues concerning the Lagrangian bound approach for partly
convex optimization problems. After the Introduction, in Section 2,
addressing the first issue, we show that the Lagrangian dual to a partly
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linear optimization problem is a convex problem, and under some addi-
tional assumptions, even a linear program. Since linear programs can be
solved very efficiently, this seems to be an advantage of Lagrangian bounds
for this class of problems. However, in the next Section 3 we show how
these bounds may be very poor if the Lagrangian dual is formed from a
bad reformulation of the original problem. Section 4 discusses the last issue
of convergence conditions for Lagrangian bound methods for partly con-
vex global optimization. Incidentally, several incorrect results that have
been published recently on this subject will be pointed out and corrected.
Section 5 concludes the paper with some applications illustrating the use-
fulness of the method when it is well founded.

2. When Lagrangian Bounds can be Practically Computed?

Lagrangian bounds are generally difficult to compute. In fact, more often
than not, the Lagrangian dual to a nonconvex problem is itself a noncon-
vex problem. Therefore, the first important issue to be dealt with is when
Lagrangian bounds can be computed practically. In this section we exam-
ine a class of problems for which the Lagrangian dual is a convex, or even
a linear program. This class includes partly linear optimization problems
that have the following general formulation:

f �½r;s� ¼ minfhcðxÞ; yi þ hc0; xij AðxÞyþ BxOb; rOxOs; yP0g; ðGPLÞ
where x 2 R

n; y 2 R
p; c : Rn ! R

p; c0 2 R
n; A :¼ R

n ! R
m�p; B 2 R

m�n;
b 2 R

m; r; s 2 R
n
þ: Setting AðxÞ ¼ ½aijðxÞ�; and denoting the i-th row of B

by Bi; this problem can also be written in the expanded form as

min
Xp

j¼1
yjcjðxÞ þ hc0;xi;

s:t:
Xp

j¼1
yjaijðxÞ þ hBi;xiObi i ¼ 1; . . . ;m;

yP0; rOxOs:

ðGPLÞ

THEOREM 1. The Lagrangian dual of (GPL) with respect to the nonlinear
constraints, i.e.,

u�½r;s� ¼ sup
kP0

inffhy;cðxÞiþ hc0;xiþ hk;AðxÞyþBx� bij x 2 ½r; s�; yP0g;

ð1Þ
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is the convex program

u�½r;s� ¼ hc0; ri þmax
k;t
½hr� s; ti þ hBr� b; ki�; ð2Þ

s.t. gðkÞP0; kP0; tP0; tþ BTkþ c0P0; ð3Þ
where gðkÞ ¼ minj¼1;...;pminrOxOs½hAjðxÞ; ki þ cjðxÞ�:

Proof. For fixed kP0 we have

inffhy; cðxÞi þ hc0; xi þ hk;AðxÞyþ Bx� bij x 2 ½r; s�; yP0g
¼ �hb; ki þ inf

x2½r;s�
inf
yP0
fhBx; ki þ hc0; xi þ hcðxÞ þ ðAðxÞÞTk; yig

¼ �hb; ki þ hðkÞ;
where

hðkÞ ¼ infx2½r;s�½hBx; ki þ hc0; xi� if cðxÞ þ ðAðxÞÞTkP0 8x 2 ½r; s�;
�1 otherwise:

�

ð4Þ
Now observe that for any q 2 R

n :

min
rOxOs

hq;xi ¼ hq; ri þmaxfhr� s; tij tP0; tP� qg;

since minfhq;xij rOxOsg ¼ minfhq; ri þ hq; x� rij 0Ox� rOs� rg ¼
hq; ri þ

P
qi<0

qiðsi � riÞ ¼ hq; ri þmaxfhr� s; tij tP0; tP� qg: Therefore,

inf
rOxOs

fhBx; ki þ hc0;xig

¼ hBTkþ c0; ri þmaxfhr� s; tij tP0; tP� BTk� c0g:
ð5Þ

Denote the j-th column of A by Aj; so that the condition hAðxÞ;
ki þ cðxÞP0 8x 2 ½r; s� means gðkÞP0; where

gðkÞ :¼ min
j¼1;...;p

min
rOxOs

½hAjðxÞ; ki þ cjðxÞ�:

Since for fixed x the function k 7!hAjðxÞ; ki þ cjðxÞ is affine, gðkÞ is a con-
cave function and the problem (1) reduces to (2)–(3), which is a convex
program. h

COROLLARY 1. Assume that
(*) For every j the functions cjðxÞ; aijðxÞ; i ¼ 1; . . . ;m; are either all

increasing on ½r; s� or all decreasing on ½r; s�:
Then the Lagrangian dual of (GPL) is the dual of its LP relaxation:
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min
X

j2Jþ
cjðrÞyj þ

X

j2J�
cjðsÞyj þ hc0; xi

( )
; ð6Þ

s:t:
X

j2Jþ
aijðrÞyj þ

X

j2J�
aijðsÞyj þ hBi; xiObi i ¼ 1; . . . ;m; ð7Þ

yP0; rOxOs; ð8Þ
where Jþ is the set of all j such that all cjðxÞ; aijðxÞ; i ¼ 1; . . . ;m; are increas-
ing, and J� is the set of all j such that all cjðxÞ; aijðxÞ; i ¼ 1; . . . ;m; are
decreasing.

Proof. By hypothesis Jþ [ J� ¼ f1; . . . ; pg; so for every j ¼ 1; . . . ; p; we
have

min
rOxOs

hAjðxÞ; ki þ cjðxÞ
� �

P0

, min
rOxOs

Xm

i¼1
kiaijðxÞ þ cjðxÞ

" #
P0

,
(Pm

i¼1 kiaijðrÞ þ cjðrÞP0 if j 2 Jþ ;Pm
i¼1 kiaijðsÞ þ cjðsÞP0 if j 2 J� :

ð9Þ

In view of (2), (3), (5) the problem (1) thus reduces to the linear program

hc0; ri þmax hr� s; ti þ
Xm

i¼1
ki½hBi; ri � bi�

( )
;

s.t.

�
Pm

i¼1 kiBi � tOc0;

�
Pm

i¼1 kiaijðrÞOcjðrÞ j 2 Jþ ;

�
Pm

i¼1 kiaijðsÞOcjðsÞ j 2 J� ;

kP0; tP0:

���������

whose dual is

hc0; ri þmin
X

j2Jþ
cjðrÞyj þ

X

j2J�
cjðsÞyj þ hc0; zi

( )
;

s.t.
X

j2Jþ
aijðrÞyj þ

X

j2J�
aijðsÞyj þ hBi; rþ ziObi i ¼ 1; . . . ;m;

yP0; 0OzOs� r:

By setting x ¼ rþ z; the latter problem becomes (6–7–8). h

COROLLARY 2. Assume that:

(#) For fixed k each function hAjðxÞkþ cjðxÞ is quasiconcave.
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Then the Lagrangian dual of (GPL) is the linear program

hc0; ri þmax hr� s; ti þ
Xm

i¼1
ki½hBi; ri � bi�

( )
;

s.t.

�
Pm

i¼1 kiBi � tOc0;

�
Pm

i¼1 kiaijðvÞOcjðvÞ v 2 V; j ¼ 1; . . . ; p;

kP0; tP0;

�������

where V denotes the vertex set of the hyperrectangle [r,s].

Proof. Indeed, the condition minrOxOs½hAjðxÞ; ki þ cjðxÞ�P0 is then equiva-
lent to saying that minv2V½hAjðvÞ; ki þ cjðvÞ�P0: h

Thus, a Lagrangian bound for (GPL) is obtained by solving a convex
program which reduces to a linear program if assumption (*) or (#) is satis-
fied. In the case when (*) is satisfied, this linear program is nothing but a
LP relaxation of (GPL) and since a LP relaxation may not be the tightest
convex relaxation, it is unlikely that this dual bound should be the best
among all bounds obtained by convex relaxation. In the next section we will
show a counter-example in the class of quadratic programming problems.

3. An Error About Lagrangian Bounds for Quadratic Programs

The best results on Lagrangian bounds for quadratic optimization under
quadratic constraints have been obtained in [8–10]. An important feature
that has been exploited very efficiently in these papers is that, by adding cer-
tain superfluous constraints (i.e. constraints implied by already existing con-
straints), one may drastically improve the Lagrangian bound and in some
favorable cases even obtain the exact minimum. That is, the quality of a
Lagrangian bound very much depends on the specific equivalent formula-
tion used for the given problem when forming the Lagrangian dual. While a
good reformulation may give tight dual bounds, a bad reformulation may
lead to rather poor dual bounds. This can be illustrated by considering the
dual bounds, developed in [11], which have been misleadingly claimed to be
in a sense the best among all bounds obtained by convex relaxation.
By restricting our attention to the typical case of just one nonlinear con-

straint, consider as in [11] the quadratic programming problem:

minfhx;Qxi þ hq;xij Axþ dO0; hx;Cxi þ hc;xi þ hO0; aOxObg;
ðQÞ

where Q;C are n� n real matrices, A 2 R
m�n; q; c 2 R

n; d 2 R
m; h 2 R;

a; b 2 R
n
þ and aOb: Let Qi;Ci be the i-th row of Q;C resp., R ¼ fx 2 R

nj
aOxObg,
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ai ¼ minfhQi;xij x 2 Rg; �ai ¼ maxfhQi;xij x 2 Rg � ai;

bi ¼ minfhCi;xij x 2 Rg; �bi ¼ maxfhCi;xij x 2 Rg � bi:

With the help of two additional variables y; z 2 R
n it can easily be shown

that the problem (Q) can be rewritten equivalently as

min hx; yi þ hqþ a; xi;
s.t. Qx� y� aO0;

Axþ dO0;

Cx� z� bO0;

hx; zi þ hbþ c; xi þ hO0;

yO�a; zO�b;

yP0; zP0; aOxOb:

ðPÞ

The following claim was made in [11]:
A1 (Proposition 2.2 in ([11]). The Lagrangian dual of (P) is the dual of

the linear program

min ha; yi þ hqþ a; xi;
s.t. Qx� y� aO0;

Axþ dO0;

Cx� z� bO0;

ha; zi þ hbþ c; xi þ hO0;

yO�a;

zO�b;

aOxOb; yP0; zP0:

ðLPÞ

A2 (Propositions 2.3 in [11]). The Lagrangian bound for (P) furnished by
the optimal value bðPÞ of (LP) is at least as good as any bound obtained by
convex relaxation of (P).
Since it can easily be checked that (P) is a problem of the class (GPL),

satisfying condition (*), assertion (A1) is a straightforward consequence of
Corollary 1. As we saw, the proof of this fact, even for a more general
problem, is very simple and does not need cumbersome computations as in
[11]. On the other hand, assertion (A2) is wrong (so the proof of it in [11]
is invalid), as should be expected from the discussion in the previous sec-
tion and is clear from the following simple counter-example:1

Consider the quadratic program with one variable x 2 R :

1Example given by Nguyen thi Hoai Phuong.
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minfx2 � 3xj � x2 þ 4xO0; 0OxO4g: ð10Þ
whose optimal value is obviously 0. As can easily be verified, here a ¼ 0;
�a ¼ 4; b ¼ �4; �b ¼ 4; so hqþ a; ai ¼ 0; and the associated problem (P) is

min xy� 3x;

s.t. x� yO0;

� x� zþ 4O0;

xzO0;

0OxO4; 0OyO4; 0OzO4:

The Lagrangian dual of this problem is the dual of its LP relaxation and
since the objective function of this LP relaxation is 0y� 12; its optimal
value is bðPÞ ¼ �12; much inferior to the optimal value 0 of (Q). Further-
more, by replacing xy and xz with their convex envelopes, as in the
method earlier proposed by F.A. Al-Khayyal et al. [1] (see also [15],
p. 299), i.e.,

maxf0; 4xþ 4y� 16g; maxf0; 4xþ 4z� 16g;
we obtain a convex relaxation of (P), which reduces to the linear program

min t� 3x;

s.t. 4xþ 4y� 16Ot; x� yO0;

� x� zþ 4O0; 4xþ 4z� 16O0;

0OxO4; 0OyO4; 0OzO4; 0Ot;

with optimal value �6; yielding a much better bound than bðPÞ ¼ �12:
Furthermore, the Lagrangian dual of problem (10) itself is

sup
uP0

inffx2 � 3xþ ð�x2 þ 4xÞuj 0OxO4g:

Since for u ¼ 1 : inffx2 � 3xþ ð�x2 þ 4xÞuj 0OxO4g ¼ inffxj 0Ox �
4g ¼ 0; while the optimal value of ð10Þ is 0, we have, by the weak duality
theorem

sup
uP0

inffx2 � 3xþ ð�x2 þ 4xÞuj 0OxO4g ¼ 0:

Thus, in this example the duality gap is zero for the original quadratic
problem (Q), while it is positive (and rather large) for the equivalent for-
mulation (P). Also by adding the superfluous constraint xðx� 4ÞO0
(implied by 0OxO4Þ; we get another equivalent formulation of (10) with
no duality gap:
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sup
u2R

inffx2 � 3xþ ð�x2 þ 4xÞuj 0OxO4g

¼ minfx2 � 3xj � x2 þ 4x ¼ 0; 0OxO4g
¼ minfxj 0OxO4g ¼ 0:

This demonstrates that the bounds computed by the method in [11] are in
general very poor actually, and even much inferior to the well known
bounds earlier proposed in the literature for the same problem.

4. When are Lagrangian Bound Methods Guaranteed to Converge?

The last issue mentioned in the Introduction is when Lagrangian bounds
can be incorporated into branch and bound procedures to produce success-
ful convergent solution methods. In this section we discuss this issue for
the general problem (GPC):

inffFðx; yÞj Giðx; yÞO0 i ¼ 1; . . . ;m; x 2 C; y 2 Dg; ðGPCÞ
where, as already stated in the Introduction, C is a nonempty compact
convex subset of a (hyper) rectangle X � R

n
þ;D is a nonempty closed con-

vex subset of a (hyper) rectangle Y � R
p
þ; while Fðx; yÞ : X� Y! R; and

Giðx; yÞ : X� Y! R; i ¼ 1; . . . ;m; are lower semi-continuous functions,
convex in y for every fixed x:
Define Gðx; yÞ ¼ ðG1ðx; yÞ; . . . ;Gmðx; yÞÞ; and write Gðx; yÞO0 to mean

Giðx; yÞO0; i ¼ 1; . . . ;m: Suppose a rectangular branch and bound algo-
rithm is applied to solve (GPC) in which, following a general principle (see
[15], Section 7.2.2), branching is performed upon the nonconvex variable x:
For any rectangle M in the x-space let bðMÞ be a lower bound computed
for inffFðx; yÞj Gðx; yÞO0; x 2M \ C; y 2 Dg; according to some chosen
bounding rule. We will assume that the subdivision rule is exhaustive (see
[15]), while the bounding rule satisfies the natural conditions: inffFðx; yÞj
x 2M \ C; y 2 DgObðMÞ; bðM0ÞPbðMÞ whenever M0 �M (these condi-
tions are obvious for Lagrangian bounds). At iteration k; if ak is the objec-
tive function value of the best feasible solution known so far
(ak ¼ a > supfFðx; yÞjx 2 C; y 2 Dg, if no feasible solution has been
known), then all partition sets M with bðMÞPminfa; akg are removed, and
a partition set with smallest bðMÞ among all remaining partition sets is
selected for further subdivision. The algorithm terminates when no parti-
tion set remains for consideration: then an optimal solution is the current
best feasible solution if ak < a, or the problem is infeasible if ak ¼ a.
We say that the bounds are eventually exact if for any filter (infinite

nested sequence of partition sets) fMkmg collapsing to a single point x� we
have
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lim
m!þ1

bðMkmÞ ¼ inffFðx�; yÞj Gðx�; yÞO0; y 2 Dg: ð11Þ

THEOREM 2. If the bounds are eventually exact then whenever the algo-
rithm is infinite it generates a filter fMkmg collapsing to a point x� 2 C such
that

inffFðx�; yÞj Gðx�; yÞO0; y 2 Dg ¼ infðGPCÞ: ð12Þ
Any optimal solution y� of the latter convex program then yields an opti-
mal solution ðx�; y�Þ of (GPC).

Proof. The existence of a filter fMkmg � fMkg follows from the general the-
ory of branch and bound algorithms (see e.g. [15]). By exhaustiveness, such
a filter collapses to a point x�: Since every partition set M with bðMÞ ¼ þ1
is pruned, one must have bðMkmÞ < þ1 and hence, Mkm \ C 6¼ ; 8m: The
sets Mkm \ C then form a nested sequence of nonempty compact sets, so by
Cantor theorem, \þ1m¼1ðMkm \ CÞ ¼ ð\þ1m¼1ðMkmÞ\ C 6¼ ;: Therefore, x� 2 C:
Since the sequence bðMkmÞ is nondecreasing, the limit b� ¼ limm!þ1 bðMkmÞ
exists and b�Oa. Let

c :¼ inffFðx; yÞj Gðx; yÞO0; x 2 C; y 2 Dg: ð13Þ
Then, obviously, b�Oc: But in view of (11),

b� ¼ inffFðx�; yÞj Gðx�; yÞO0; y 2 Dg
P inffFðx; yÞj Gðx; yÞO0; x 2 C; y 2 Dg
¼c;

hence b� ¼ c: h

It follows from this theorem that, if the bounds are eventually exact and
the problem is infeasible then, with a<þ1, the branch and bound cannot
be infinite, and infeasibility will be detected after finitely many steps. In
other words, an algorithm using eventually exact bounds is guaranteed to
converge (in finitely or infinitely many steps) to a global optimal solution of
(GPC), or else to detect infeasibility in finitely many steps. The important
convergence issue thus reduces to investigating conditions under which the
Lagrangian bounds

bðMÞ ¼ sup
k2Rm

þ

inffFðx; yÞ þ hk;Gðx; yÞij x 2M \ C; y 2 Dg ð14Þ

are eventually exact.

THEOREM 3. In (GPC), assume, in addition, that D is compact. Then the
Lagrangian bounds are eventually exact.
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Proof. For x 2 C fixed the function ðy; kÞ7!Fðx; yÞ þ hk;Gðx; yÞi is convex,
lower semi-continuous in y and linear in k; so if D is compact then we
have by the classical minimax equality (see e.g. [6] or [15]):

min
y2D

sup
k2Rm

þ

fFðx; yÞ þ hk;Gðx; yÞig ¼ sup
k2Rm

þ

min
y2D
fFðx; yÞ þ hk;Gðx; yÞig:

ð15Þ
Since clearly

sup
k2Rm

þ

fFðx; yÞ þ hk;Gðx; yÞig ¼ Fðx; yÞ if Gðx; yÞO0;
þ1 otherwise;

�

we have from (15), for every x 2 C;

minfFðx; yÞj Gðx; yÞO0; y 2 Dg ¼ sup
k2Rm

þ

min
y2D
fFðx; yÞ þ hk;Gðx; yÞig:

ð16Þ
Consider now a filter fMkg collapsing to a point x� (to simplify the nota-
tion we write Mk instead of MkmÞ: As we saw in the proof of Theorem 2,
x� 2 C; while by virtue of (16):

minfFðx�; yÞj Gðx�; yÞO0; y 2 Dg ¼ sup
k2Rm

þ

min
y2D
fFðx�; yÞ þ hk;Gðx�; yÞig:

ð17Þ
Let us show that this implies (11), i.e.,

lim
k!1

bðMkÞ ¼ minfFðx�; yÞj Gðx�; yÞO0; y 2 Dg: ð18Þ

From the obvious inequalities

bðMkÞO minfFðx; yÞj Gðx; yÞO0; x 2Mk \ C; y 2 Dg
O minfFðx�; yÞj Gðx�; yÞO0; y 2 Dg

it follows that

bðMkÞ % b�OminfFðx�; yÞj Gðx�; yÞO0; y 2 Dg:
Arguing by contradiction, suppose that (18) does not hold, i.e.,

minfFðx�; yÞj Gðx�; yÞO0; y 2 Dg > b�: ð19Þ
Then by virtue of (16),

sup
k2Rm

þ

min
y2D
fFðx�; yÞ þ hk;Gðx�; yÞig > b�; ð20Þ

so there exists ~k satisfying

min
y2D
fFðx�; yÞ þ h~k;Gðx�; yÞi > b�:
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Using the lower semi-continuity of the function ðx; yÞ7!fFðx; yÞþ
h~k;Gðx; yÞig we can then find, for every fixed y 2 D; an open ball Uy in R

n

around x� and an open ball Vy in R
p around y such that

Fðx0; y0Þ þ h~k;Gðx0; y0Þi > b� 8x0 2 Uy \ C;8y0 2 Vy:

Since the balls Vy; y 2 D; form a covering of the compact set D; there
is a finite set E � D such that the balls Vy; y 2 E; still form a covering
of D: If U ¼ \y2EUy then for every y 2 D we have y 2 Vy0 for some
y0 2 E; hence

Fðx; yÞ þ h~k;Gðx; yÞi > b� 8x 2 U \ C; 8y 2 D:

But Mk � U for all sufficiently large k; because \kMk ¼ fx�g: Then the
just established inequality implies that

sup
k2Rm

þ

minfFðx; yÞ þ hk;Gðx; yÞij x 2Mk \ C; y 2 Dg > b�:

Hence, bðMkÞ > b�; a contradiction. This completes the proof. h

REMARK 1. Theorem 3 includes the results in [3] and [4] as special cases
when D is a singleton and the constraints are linear.

REMARK 2. For the validity of Theorem 3 the lower semi-continuity of
Fðx; yÞ is essential while, as was shown above, the condition (15) is implied
by other assumptions (in particular the compactness of DÞ; hence is super-
fluous. In the paper [12] this superfluous condition on zero duality gap at
x� is required, but the lower semi-continuity of Fðx; yÞ is replaced by the
following weaker one:
(B) Fðx; yÞ > �1 for x 2 C; y 2 D and there exists an optimal solution

whenever the feasible set of (GPC) is nonempty.
However, easily constructed counter examples show that the resulting

theorems (Theorems 1 and 2 in [12]) are wrong (for details see [17]). In
fact, the proofs of these theorems, which use only condition (B), contain
such obviously incorrect arguments as claiming that two disjoint closed
convex sets T1;T2 in R

m can be separated by an open convex set X � T2

such that X \ T1 ¼ ;:
The assumption on the compactness of D is too restrictive for many

applications. For instance, this assumption is not satisfied for the prob-
lem investigated in [2] (so even if the results in [12] were correct, they
could not be legitimately applied to the problem investigated in [2], as
was done in [12]). In the next theorem the compactness of D is replaced
by a weaker condition, at the expense, however, of requiring the continu-
ity, and not merely the lower semi-continuity, of the functions Fðx; yÞ
and Gðx; yÞ:
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THEOREM 4. In (GPC) assume that the functions Fðx; yÞ;Gðx; yÞ are
continuous on X� Y and in addition, that
(S) For every x 2 C there is k 2 R

m
þ such that Fðx; yÞ þ hk;Gðx; yÞi ! þ1

as y 2 D; kyk ! þ1:
Then the Lagrangian bounds are eventually exact.

Proof. In view of Theorem 3 we may assume D unbounded. Consider a fil-
ter fMkg collapsing to a point x�. As we saw previously, x� 2 C, and, as
k! þ1,

bðMkÞ % b� � b :¼ inffFðx�; yÞjGðx�; yÞ � 0; y 2 Dg:
According to (S) there exists ~k 2 R

m
þ satisfying

Fðx�; yÞ þ h~k;Gðx�; yÞi ! þ1 as y 2 D; kyk ! þ1: ð21Þ
By virtue of a known minimax theorem ([6], Chapter VI, Proposition 2.3;
see also [14]), this ensures that

~b ¼ min
y2D

sup
k2Rm

þ

½Fðx�; yÞ þ hk;Gðx�; yÞi� ¼ sup
k2Rm

þ

inf
y2D
½Fðx�; yÞ þ hk;Gðx�; yÞi�:

ð22Þ
We show that b� ¼ b. Suppose the contrary, i.e.,

b� < b: ð23Þ
Obviously hkþ ð1� hÞ~k 2 R

m
þ for every ðk; hÞ with k 2 R

m
þ; 0 � h < 1. Let

K :¼ fk 2 R
m
þj inf

y2D
½Fðx�; yÞ þ hk;Gðx�; yÞi� > �1g: ð24Þ

For every k, since bðMkÞ � b�, we have

8ðk; hÞ 2 K� ½0; 1Þ inf
x2C\Mk;y2D

½Fðx; yÞ þ hhkþ ð1� hÞ~k;Gðx; yÞi� � b�:

Hence, if � denotes an arbitrary number satisfying 0 < � < b� b�, then for
every ðk; hÞ 2 K� ½0; 1Þ and every k there exists xðk;k;hÞ 2 C \Mk,
yðk;k;hÞ 2 D satisfying

Fðxðk;k;hÞ; yðk;k;hÞÞ þ hhkþ ð1� hÞ~k;Gðxðk;k;hÞ; yðk;k;hÞÞi � b� þ �: ð25Þ
We contend that not for every ðk; hÞ 2 K� ½0; 1Þ the sequence
fyðk;k;hÞ; k ¼ 1; 2; . . .g is bounded. Indeed, otherwise we could assume that,
for every ðk; hÞ 2 K� ½0; 1Þ:yðk;k;hÞ ! yðk;hÞ 2 D, as k! þ1. Since
xðk;k;hÞ 2Mk while \þ1k¼1Mk ¼ fx�g, we would have xðk;k;hÞ ! x�. Then
letting k! þ1 in (25) would yield

Fðx�; yðk;hÞÞ þ hhkþ ð1� hÞ~k;Gðx�; yðk;hÞÞi � b� þ �;
for every ðk; hÞ 2 K� ½0; 1Þ, hence
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sup
k2K;0�h<1

inf
y2D
½Fðx�; yÞ þ hhkþ ð1� hÞ~k;Gðx�; yÞi� � b� þ � < b:

But for every k 2 K the concave function uðhÞ ¼ inf y2D½Fðx�; yÞþ
hhkþ ð1� hÞ~k;Gðx�; yÞi� satisfies sup0�h<1 uðhÞ � uð1Þ, i.e.,

sup
0�h<1

inf
y2D
½Fðx�; yÞ þ hhkþ ð1� hÞ~k;Gðx�; yÞi� � inf

y2D
½Fðx�; yÞ þ hk;Gðx�; yÞi�:

Therefore, we would have

supk2Rþm inf y2D½Fðx
�; yÞ þ hk;Gðx�; yÞi�

¼ supk2K inf y2D½Fðx�; yÞ þ hk;Gðx�; yÞi� ðbecause of (24)Þ
¼ supk2K;0�h<1 inf y2D½Fðx�; yÞ þ hhkþ ð1� hÞ~k;Gðx�; yÞi� < b;

contradicting (22). Thus, there exists ð�k; �hÞ 2 K� ½0; 1Þ such that, by pas-
sing to a subsequence if necessary, kyðk;�k;�hÞk ! þ1ðk! þ1Þ: Now, for
an arbitrary point y� 2 D, let q :¼ Fðx�; y�Þ þ h�h�kþ ð1� �hÞ~k;Gðx�;Y�Þi.
Then there is k0 such that for all k � k0,

Fðxðk;�k;�hÞ; y�Þ þ h�h�kþ ð1� �hÞ~k;Gðxðk;�k;�hÞ; y�Þi < qþ �: ð26Þ

For simplicity of notation, let us write �xk; �yk for xðk;
�k;�hÞ; yðk;

�k;�hÞ. For any
l > ky�k define

�ykl ¼ l

k�ykk �yk þ ð1� l

k�ykk y
�Þ:

Clearly, there is k1 � k0 such that for all k � k1,

0 < l=k�ykk < 1; l� ky�k � k�yklk � lþ ky�k:
From the inequalities (25) and (26) and the convexity of the function
y! Fð�xk; yÞ þ h�h�kþ ð1� �hÞ~k;Gð�xk; yÞi, we then deduce

Fð�xk; �yklÞ þ h�h�kþ ð1� �hÞ~k;Gð�xk; �yklÞi � maxfb�;qg þ e < þ1:
Since f�yklg is bounded, we can assume �ykl ! ul 2 D as k! þ1. This
yields

�h½Fðx�; ulÞ þ h�k;Gðx�; ulÞi� þ ð1� �hÞ½Fðx�; ulÞ þ h~k;Gðx�; ulÞi�
� maxfb�; qg þ e;

where clearly kulk � l� ky�k ! þ1 as l! þ1. Since �k 2 K, by letting
l! þ1 in the above inequality and taking account of (21) and (24), we
get þ1 � maxfb�;qg þ e, which is a contradiction. Therefore b� ¼ �b, as
was to be proved. h
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REMARK 3. Actually it suffices to require conditions (S) for the point
x� 2 C such that fx�g ¼ \kMk; where fMkg is a filter of partition sets gen-
erated when solving (GPC) by the above described algorithm.

5. Applications

To illustrate the usefulness of the above results we just consider two exam-
ples of applications.
I. The Pooling and Blending Problem. It was shown in [2] that this prob-

lem from petrochemical industry can be given the form

minfcTyj AðxÞyOb; yP0; x 2 Xg;
where X is a hyperrectangle in R

n and AðxÞ is an m� p matrix whose ele-
ments aijðxÞ are continuous functions of x: Since this is a special case of
(GPL) satisfying condition (#) of Corollary 2, the Lagrangian bound can
be computed by solving a linear program. Furthermore, for this (GPL)
condition (S) in Theorem 4 now reads

ð8x 2 XÞ ð9k 2 R
m
þÞ cTyþ hk;AðxÞy� bi ! þ1 as y! þ1;

where the last condition holds if and only if hAðxÞ; ki þ c > 0: Therefore, if
ð8x 2 XÞ ð9k 2 R

m
þÞ hAx; ki þ c > 0; then the branch and bound algorithm

using Lagrangian bounds converges. Thus, the above results, much more
general than those in [2], are obtained in a much shorter way. Another
short proof of these results can also be found in [15].
II. The Bilinear Matrix Inequalities Problem. The general bilinear matrix

inequalities (BMI) problem in control theory can be formulated as (see e.g.
[13]):

minhc; xi þ hd; yi ð27Þ

s:t: G0 þ
Xm

j¼1
yjGj 	 0 ð28Þ

L0 þ
Xn

i¼1
xiLi0 þ

Xm

j¼1
yjL0j þ

Xn

i¼1

Xm

j¼1
xjyjLij 
 0 ð29Þ

x 2 X ¼ ½p; q� � R
n; y 2 R

m
þ ð30Þ

where x; y are the decision variables, G0;Gj;L0;L0i;Lj0;Lij are symmetric
matrices of appropriate sizes, and the notation G 	 0;L 
 0 means that G
is a semidefinite negative matrix, L is a definite negative matrix.
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For ease of notation we write

A
B

� �

d

for
A 0
0 B

� �
;

and define

A00ðxÞ¼
G0

L0þ
Pn

i¼1xiLi0

hx;ci

2
4

3
5

d

; Aj0ðxÞ¼
Gj

L0jþ
Pn

i¼1xiLij

dj

2
4

3
5

d

; Q00¼
0
0
1

2
4
3
5

d

:

Then, as was shown in [13], this problem can be converted to the form

minftj A0ðx; p; qÞ þ
Xm

j¼1
yjAjðx; p; qÞ 	 tQ; yP0; x 2 Xg;

where

Ajðx; p; qÞ ¼
Aj0ðxÞ

Aj1ðx; p; qÞ

� �

d

; Q ¼ Q00

Q01

� �

d

; Q01 ¼ 0;

Aj1ðx; p; qÞ ¼

ðx1 � p1ÞGj

ðq1 � x1ÞGj

� � �
ðxn � pnÞGj

ðqn � xnÞGj

2
66664

3
77775

d

j ¼ 0; 1; . . . ; n:

In this form the (BMI) problem appears to be a problem (GPL). Condition
(S) in Theorem 4 can be formulated as

ð8x 2 XÞð9Z1 � 0Þ TrðZ1Q00Þ ¼ 1; TrðZ1Aj0ðxÞ > 0 j ¼ 1; . . . ;m:

Therefore, by Theorem 4, under this assumption the BMI problem can be
solved by a convergent branch and bound algorithm using Lagrangian
bounds, as proposed in [13]. Note that the Lagrangian dual of the problem

max
Z�0

min
t2R;yP0;x2M

tþ Tr ZðA0ðx; p; qÞ þ
Xm

j¼1
yjAjðx; p; qÞ � tQÞ

" #( )

has been shown in [13] to be equivalent to the LMI program

maxftj TrðZA0ðx;p;qÞPt; TrðZAjðx;p;qÞÞP0 8x2 vertX; j¼ 1; . . . ;m;

TrðZQÞ ¼ 1; Z� 0g
where vertX denotes the vertex set of X:
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